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Abstract
We present an enhanced reverse Monte Carlo approach that includes fitting
to NMR data in the form of chemical shifts in addition to the usually used
scattering data. Furthermore, the internal energy is accounted for in the cost
function to prevent unphysical structures. This approach was applied to generate
structural models of amorphous Si3B3N7, which is a prototype of a new class of
high performance ceramics exhibiting interesting features like high thermal and
mechanical stability.

We fitted our structural models in direct space to radial distribution
functions from x-ray, neutron and electron scattering experiments, and to the
15N NMR spectrum of the ceramic. This spectrum could not be interpreted
before since it exhibits a broad structureless signal which is a superposition of
peaks related to different chemical environments NBx Si3−x (x = 0–3) whose
chemical shifts were only partly known experimentally. Therefore we based the
calculation of NMR data in the reverse Monte Carlo optimizations on previous
theoretical work that was done in our group. All generated models reproduce
the experimental radial distribution functions very well. This good agreement
does not deteriorate when the NMR data are taken into account. Fitting the
models to 15N NMR chemical shifts in addition to scattering data results in
structural changes that not only improve the agreement with the experimental
magic-angle spinning (MAS) NMR spectrum but yield also significantly better
second-nearest neighbour coordination statistics.

M Supplementary data are available from stacks.iop.org/JPhysCM/19/056201

1. Introduction

Amorphous multinary nitrides of silicon and boron such as a-Si3B3N7 or a-SiBN3C [1–3] are
a relatively new class of high performance materials that exhibit very promising thermal and
mechanical properties. The ternary ceramic a-Si3B3N7, for example, is stable up to ≈1900 K,
when decomposition sets in. Even more stable against thermal decomposition (Tdec ≈ 2100 K)
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is a-SiBN3C. Both materials are also surprisingly stable in oxidizing atmosphere. In addition
to their thermal stability these materials exhibit good creep resistance and tensile strength.

For a better understanding of the origin of these fascinating properties it is highly
desirable to gain insight into the microscopic structure. However, for amorphous compounds
such as the above ones, structural information is very difficult to extract from experiment.
For example, scattering methods—very powerful tools for detailed structure exploration of
crystalline solids—only yield spatially averaged information when applied to amorphous
systems, basically limited to the first one or two coordination spheres.

Because of the experimental difficulties, theoretical methods play an important role for
structure elucidation of amorphous materials. These methods comprise a large spectrum
ranging from molecular dynamics (on ab initio [4] or empirical potential energy surfaces [5, 6])
or Monte Carlo methods [6, 7] to rule-based methods for building up continuous random
networks [8, 9]. In addition, quantum chemical calculations on molecules or clusters can
be applied for finding relations between structure and experimental properties [10, 11] or for
examining reactions occurring during synthesis of the materials [12].

The reverse Monte Carlo (RMC) method [13, 14], which is used in this work, is an
in silico method that is somewhat different from the previously described methods as it
connects theoretical modelling and experimental data. It combines information from different
experimental sources for generating structural models with atomic resolution that are in
agreement with all this information. One of the shortcomings of the reverse Monte Carlo
method is the ambiguity of the generated models, which is owing to the limited structural
information in the experimental data. To overcome these ambiguities it is important to use
as much experimental information as possible, preferably from different experimental sources.
Inclusion of NMR data is a step in this direction.

There has already been some work on using NMR data in RMC optimizations. Zwanziger
et al fitted their models to the second moment of the magnetic dipole interaction between
two nuclei and used information about coordination numbers obtained from NMR [15, 16].
The second moment of the dipole interaction can easily be calculated from the partial radial
distribution functions which are a by-product of the scattering-data calculation. In this work
we pursue a different approach that focuses on the NMR chemical shifts which are calculated
as a function of the composition and the geometry of the first coordination sphere. This will be
illustrated in more detail in section 2.2.2.

Our modelling approach is restricted to the simpler ternary nitride a-Si3B3N7. This
restriction has two reasons: firstly, the stoichiometric composition of a-Si3B3N7 is well defined,
in contrast to, e.g., a-SiBN3C, where one finds a greater spread of compositions. Secondly, the
modelling of a ternary amorphous system is already quite difficult and the level of difficulty
grows with increasing number of constituents.

Several in silico approaches for modelling of a-Si3B3N7 have already been reported in
the literature [4–7, 17–19]. Some of these approaches include a final RMC refinement of
the structures, where the models were fitted to scattering data from two different experiments
(x-ray and neutron). In this paper we are going to present RMC models of a-Si3B3N7 that were
fitted to data from three different scattering experiments (x-ray, neutron, and electron) and in
addition to the 15N NMR spectrum of the ceramic.

Amorphous Si3B3N7 was extensively examined experimentally. X-ray [20],
neutron [20, 21] and electron scattering [22] experiments were performed, partially on
isotopically enriched samples, yielding the pair distribution functions (PDFs) of the material.
Electron radiation was also used to determine the element distribution of the material by energy
filtered transmission electron microscopy (EFTEM) [22]. The latter experiment revealed a
homogeneous distribution of the elements Si, B, and N at length scales larger than ≈10 Å.
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29Si, 11B, and 15N MAS NMR experiments were performed to examine the compositions
of the first coordination spheres [23]. From the 11B and 29Si spectra it could be concluded
by comparison with crystalline reference substances that the material is composed of trigonal
planar BN3 units and distorted tetrahedral SiN4 units, which is in agreement with the
coordination numbers determined from the PDFs. A similar interpretation of the 15N NMR
spectrum, which exhibits a broad structureless peak ranging over ≈100 ppm, was not
possible. This peak is presumably a superposition of signals related to different coordination
environments NBxSi3−x (x = 0–3). A determination of the relative fractions of these
environments was mainly hindered by the fact that crystalline reference substances exist only
for homogeneous coordination environments NB3 and NSi3. Nuclear magnetic resonance
techniques were also applied to examine the structure beyond the first coordination spheres.
The numbers of second-nearest neighbours of Si and B were determined in a series of double
resonance NMR experiments [24]. From these data, information about preferred connection
schemes of the BN3 and SiN4 units could be extracted.

The uninterpretable 15N NMR spectrum of the ceramic motivated several theoretical
investigations in our group that should lead to a better understanding of the spectrum and
of the structure of a-Si3B3N7. The idea was to perform quantum chemical calculations of
the chemical shifts for (a) finding relations between the structure and the chemical shift and
(b) determining the unknown chemical shifts in NB2Si and NBSi2 environments in the solid
state. From calculations of the chemical shifts in NB3 and NB4 environments it was possible to
develop a parameterization that relates the N chemical shift to the mean distance of the next (and
second to next) neighbours [11]. Calculations on cluster models of β-Si3N4 were performed to
examine the nitrogen chemical shifts in NSi3 environments [25, 26]. The ab initio calculations
were able to reproduce the chemical shifts of the two crystallographically different N atoms
in β-Si3N4, but no simple structure–property relationships could be derived in this case. And
finally, the previously unknown chemical shifts in mixed environments NB2Si and NBSi2 in the
solid state were determined using cluster models of hypothetical crystalline Si3B3N7 [27]. The
work that is presented in this paper makes use of the knowledge assembled in all this theoretical
work as well as in the experimental work done by other groups.

2. Theory and methods

2.1. Reverse Monte Carlo

The RMC algorithm [13, 14] is a method for generating structural models that are consistent
with a set of experimental data. Consistency is achieved by minimizing a cost function (CF)
which measures the deviation between the experimental data and the data calculated from the
model (equation (1)).

CF =
N∑

i=1

[
calcG(ri) − expG(ri )

]2
(1)

N is the number of data points, expG and calcG are the experimental and calculated data.
Typically the data consist of radial distribution functions G(r) or structure factors S(Q). In
our approach they may also be the intensity I (δ) of an NMR spectrum. In the RMC procedure
the cost function is minimized by repeated random modification (usually the random move of a
single atom) of the structural model. After each move the difference between the cost functions
of the new and the previous configuration �CF = CFnew−CFold is calculated and, depending on
the value of �CF, the move is either accepted or rejected. As in every global optimization one
has to take care that the system is not trapped in local minima. This is achieved by applying an
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acceptance criterion which is very similar to the one that is used in ordinary Metropolis Monte
Carlo simulations (equation (2)).

acceptance if exp −�CF

σ
� RND[0 . . . 1]. (2)

RND[0 . . . 1] is a random number between 0 and 1. Using this criterion, uphill moves
(�CF > 0) are accepted with a probability that is high for small �CF and low for large �CF.
Downhill moves are always accepted. The parameter σ controls the acceptance probability of
uphill moves. Several variations of equation (2) can be found in the literature. In the original
RMC implementation, for example, σ is replaced by 2 and the right-hand side of equation (1)
contains a factor 1/σ 2(ri), where σ(ri) represents the experimental error. If σ is not kept
constant during the optimization, a simulated annealing procedure [28, 29] can be achieved by
stepwise lowering σ . Several factors σi can then be used for separately controlling parts of the
cost function belonging to different experiments. Further details of the cost function applied in
the present work are described in section 2.2.5.

2.2. Details of the calculations

2.2.1. Experimental scattering data. All models were optimized with respect to
radial distribution functions (RDFs) G(r) from x-ray, neutron and electron scattering
experiments [20, 22]. It turned out that the electron scattering RDF was not properly scaled,
probably because of multiple scattering present in the data, which is a common problem
in electron scattering experiments. To obtain properly scaled data we performed RMC
optimizations fitting the model to x-ray, neutron and the original electron scattering data.
After these optimizations we rescaled the experimental electron scattering data minimizing
the difference between calculated and experimental data. The rescaled electron scattering data
were used in all subsequent optimizations.

During the RMC runs all RDFs were calculated directly from the atomic positions. This
results in slightly broadened RDFs because the experimental radial distribution functions are
artificially broadened due to finite integration limits applied in the Fourier transform of the
scattering intensity. The artificial broadening of the experimental RDFs is different in the
three scattering experiments because the experimentally accessible ranges of the scattering
intensities were not identical. The scattering intensity could be detected up to 26 Å

−1
(x-ray

scattering), 50 Å
−1

(neutron scattering) and 30 Å
−1

(electron scattering). From our experience
the broadening of the model RDFs due to calculation of the scattering data in real space is
quite small though for amorphous systems [30]. Another disadvantage of calculating the radial
distribution functions directly from the atomic positions is the possible generation of artificial
structural features by fitting to ghost peaks in the experimental data which are also a side effect
of the finite Fourier transform of the scattering intensity. But as can be seen in the following
sections, this problem did not arise in our calculations. Despite these principal problems,
calculation of the RDFs directly from the atomic positions greatly enhances the computing
speed by avoiding two Fourier transforms (one for calculation of the scattering intensity from
the atomic positions, and one for calculation of the RDF from the scattering intensity), thus
making much longer optimizations possible.

2.2.2. NMR data. As already mentioned in the introduction, the 15N NMR spectrum of
a-Si3B3N7 is a superposition of signals related to different chemical environments NBx Si3−x

(x = 0–3) [23]. Only the chemical shifts in homogeneous environments NB3 and NSi3 could
be determined experimentally using crystalline reference substances. Jeschke and Hoffbauer
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(a) (b)

Figure 1. N chemical shifts as used in RMC optimizations. (a) Chemical shifts in different threefold
coordinated nitrogen environments and 15N NMR spectrum of a-Si3B3N7 [23]. (b) Distance
dependence of chemical shifts in NB3 environments. 〈rNB〉 is the mean distance of the first
neighbours. The symbol marks the shift at calculated equilibrium distance of the model used in [11].
All chemical shifts are relative to liquid CH3NO2.

measured the 15N chemical shifts of crystalline hexagonal and cubic boron nitride and found
values of −280 ppm for NB3 and −359 ppm for NB4 environments relative to CH3NO2 [31].
Harris et al determined the 15N chemical shifts in α- and β-Si3N4 as −309, −307, −297 and
−285 ppm for the four crystallographically different nitrogen atoms in α-Si3N4 and −307 and
−290 ppm for the two crystallographically different nitrogen atoms in β-Si3N4 [32].

The nitrogen chemical shifts of hexagonal and cubic boron nitride and in β-Si3N4 were
also examined in our group using computational methods [10, 11, 25, 26]. For chemical shifts
in NB3 and NB4 environments it was possible to develop a parameterization which relates
the chemical shift to the local structure (the mean distance of the first- and second-nearest
neighbour atoms). With this parameterization a chemical shift of −287 ppm at equilibrium
distance is computed for NB3 environments. The dependence of the chemical shift on the mean
first-neighbour distances is shown in figure 1(b). Chemical shifts in β-Si3N4 were calculated
as −298 and −315 ppm. Because the chemical shifts in mixed environments NB2Si and NBSi2

in the solid state are not known experimentally, we had performed calculations using clusters
of hypothetical crystalline Si3B3N7 polymorphs suggested by Kroll and Hoffmann [33] and
had found values between −272 and −290 ppm for NB2Si and −293 and −302 ppm for
NBSi2 environments (referring to the central atoms of the clusters) [27]. Contrary to previous
assumptions, the chemical shift of the threefold coordinated N thus does not steadily increase
with the number of Si neighbours. No correlations between variations of the local structure and
the chemical shifts could be found for the latter three nitrogen environments.

Using the available data, we calculated the nitrogen chemical shifts primarily as a
function of the coordination environments. Chemical shifts in NB3 and NB4 environments
were calculated using the parameterization against the mean distances of the first neighbours
from [11]. For consistency, all calculated chemical shifts were based on theoretical data. Our
first attempt was to use the original values of −287 ppm for NB3 (at a distance of 1.44 Å), −276
and −286 ppm for NB2Si, −295 and −302 ppm for NBSi2 and −298 and −315 ppm for NSi3
environments. However, because experience had shown that the calculated chemical shifts are
systematically too negative, we corrected for these errors by moving all shifts by +10 ppm.
The resulting chemical shifts (−277 ppm for NB3, −286 and −296 ppm for NB2Si, − 305 and
−312 ppm for NBSi2 and −288 and −305 ppm for NSi3) are shown in figure 1(a). As can be
seen, all shifts are within the range of the peak in the experimental 15N NMR spectrum now. To
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account for uncertainties inherent in this approach all chemical shifts (including those of NB3

environments) were broadened by Gaussians with a standard deviation of 5 ppm, corresponding
to a full width at half maximum of 11.8 ppm. It should be noted that the chemical shifts in
NSi3 environments, although based on calculations only on β-Si3N4, cover the range of shifts
measured in α-Si3N4 and in β-Si3N4.

For the fitting procedure the area of the experimental peak was normalized to 1. Likewise
the areas of all calculated peaks for threefold coordinated atoms were chosen to sum up to
1. This implies that nitrogen environments in the model which were different from the ones
included in the parameterization, for instance under- or over-coordinated N atoms, increased
the deviation between calculated and experimental NMR data and thus gave rise to a penalty
term. The coordination environments were determined using element-pair specific distance
thresholds.

It should be noted that the parameterization of the chemical shifts used in these calculations
is quite crude because the chemical shifts are primarily calculated as a function of the
coordination environment. It would be highly desirable to have parameterizations of the
chemical shifts in the solid state available that allow for better consideration of structural effects
on the chemical shifts. These are not available at present, however. Our current approach is
similar to the common practice of interpreting experimental NMR data by simulation of the
spectrum as a superposition of Gaussians representing different chemical environments as it
is implemented, for example, in the DMFIT program [34]. In our procedure this fitting to the
experimental spectrum is coupled to fitting to other experimental data which should improve
the reliability of the results.

2.2.3. Potential energy. In addition to the terms related to differences between calculated
and experimental data we incorporated the potential energy as an additional part of the cost
function. This should prevent the generation of physically unrealistic structures like under- and
over-coordinated atoms or highly strained coordination environments. The potential energy was
calculated from a computationally efficient two-body potential developed in our group [35].
This potential is based on experimental and ab initio solid state and diatomic molecular
data of compounds containing Si, B, and N atoms. It successfully reproduces experimental
data regarding structural properties such as bond lengths and bulk properties, e.g. vibrational
frequencies of the binary compounds BN and Si3N4 with threefold coordinated B and N atoms
and fourfold coordinated Si atoms.

2.2.4. Starting structure. We used a structural model of hypothetical crystalline β2-Si3B3N7

with 702 atoms (composition Si162B162N378) in a periodically repeated cubic box with side
length L = 19.7 Å. Prior to RMC optimization the structure was amorphized by melting it in
a molecular dynamics (MD) run (several nanoseconds at 3500 K, NVT-ensemble) [36]. The
structure resulting from this MD run still exhibits a certain degree of structural order. This
can be seen in figure 2, where the tubes along the z-axis, which are typical for the crystalline
structure, are still visible. The relatively sharp peaks of the radial distribution functions of the
starting structure (figures 3(a)–5(a)) also indicate a high degree of ordering.

2.2.5. Optimization procedure. The optimization procedure followed a simulated annealing
protocol, where the temperature factor T (see equations (3)–(5)) was lowered in 15 steps from
a high starting value to a final temperature of 0 which corresponds to a local optimization.
Each temperature was kept constant for 6000 000 atomic movements (about 8500 Monte Carlo
cycles), allowing the system to equilibrate and to wander around on the cost function surfaces.
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Figure 2. Starting structure, view along z-axis of the simulation cell. N: black; B: medium grey;
Si: light grey.

Figure 3. X-ray scattering pair correlation functions G(r) of optimized models (black) and
experimental data (grey) [20]. For comparison data calculated from the starting structure are also
shown. (a) Starting structure; (b)–(e) class A models (optimized with respect to scattering and NMR
data); (f)–(i) class B models (optimized only with respect to scattering data).

Five cost functions were employed in the RMC optimization: one for the potential energy
(equation (3)), three corresponding to three different scattering experiments (equation (4)) and
one related to NMR data (equation (5)). After each Monte Carlo move acceptance tests were
performed for all five cost functions, separately evaluating the following expressions.

exp − �E

kET
(3)
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Figure 4. Neutron scattering pair correlation functions G(r) of optimized models (black) and
experimental data (grey) [20]. For comparison data calculated from the starting structure are also
shown. (a) Starting structure; (b)–(e) class A models (optimized with respect to scattering and NMR
data); (f)–(i) class B models (optimized only with respect to scattering data).

Figure 5. Electron scattering pair correlation functions G(r) of optimized models (black) and
experimental data (grey) [22]. For comparison data calculated from the starting structure are also
shown. (a) Starting structure; (b)–(e) class A models (optimized with respect to scattering and NMR
data); (f)–(i) class B models (optimized only with respect to scattering data).

exp −�CFX

kXT
; CFX =

N∑

i=1

[
calcGX(ri ) − expGX(ri )

]2
(4)

(X = x-ray, neutron, electron) .
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Table 1. Weighting factors k used in RMC optimizations. The calculations are labelled according
to figures 3–9.

Label kE kx−ray kneutron kelectron kNMR

Class A: optimization with respect to scattering and NMR data

(b) 5.170 41 × 10−4 9.101 87 × 10−3 6.657 60 × 10−4 6.271 61 × 10−3 4.667 22 × 10−9

(c) 5.170 41 × 10−4 9.101 87 × 10−3 3.328 80 × 10−4 6.271 61 × 10−3 4.667 22 × 10−9

(d) 5.170 41 × 10−4 6.826 41 × 10−3 4.993 20 × 10−4 4.703 71 × 10−3 3.500 42 × 10−9

(e) 5.170 41 × 10−4 6.826 41 × 10−3 2.496 60 × 10−4 4.703 71 × 10−3 3.500 42 × 10−9

Class B: optimization only with respect to scattering data

(f) 5.170 41 × 10−4 1.447 97 × 10−2 1.039 99 × 10−3 9.912 37 × 10−3 —
(g) 5.170 41 × 10−4 1.447 97 × 10−2 0.520 00 × 10−3 9.912 37 × 10−3 —
(h) 5.170 41 × 10−4 0.965 31 × 10−2 0.693 33 × 10−3 6.608 25 × 10−3 —
(i) 5.170 41 × 10−4 0.965 31 × 10−2 0.346 66 × 10−3 6.608 25 × 10−3 —

exp −�CFNMR

kNMRT
; CFNMR =

N∑

i=1

[
calc INMR(δi) − exp INMR(δi)

]2
. (5)

A move was only accepted if all acceptance tests were positive, i.e. if all of the exponential
terms in equations (3)–(5) were � RND[0 . . . 1]. The parameters kX thus control how freely
the system can move on the different cost function surfaces. They may also be regarded as
weighting factors of the different cost functions.

Our acceptance criterion is different from the usual approach where the acceptance test is
applied to a weighted sum of the cost functions. We decided to use this acceptance criterion
because experience has shown that with our form the different cost functions are more easily
controllable [30]. For example, if the acceptance test is only applied to the sum of the cost
functions, an increase of the potential energy may be compensated by a decrease of other cost
functions, resulting in unrealistic structures with high energy.

For finding values for kE, kX, and kNMR in equations (3)–(5) that resulted in models with not
too high an energy and fitting similarly well to all experimental data, a series of shorter RMC
optimizations was performed, repeatedly adjusting the values of kE, kX, and kNMR. Having
found suitable values, longer calculations were performed, employing the four best parameter
sets. In these calculations, NMR data were included in the fitting process. For comparison, the
same procedure was applied without fitting to NMR data. In total, eight models were generated,
four fitted to scattering and NMR data and four fitted only to scattering data. Models that were
fitted to scattering and NMR data will be denoted class A models in the following; models that
were only fitted to scattering data will be denoted class B models. The values of kE, kX, and
kNMR that were used in these calculations are listed in table 1.

3. Results and discussion

3.1. Cost functions

To give quantitative insight into the agreement between experimental and calculated data the
values of all cost functions are listed in table 2. All cost functions are reduced by about 60–90%
during optimization. Particularly good fits are obtained for neutron scattering data. As can be
seen in figures 3–5 this is mainly due to a smoother shape of the calculated neutron scattering

9
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Table 2. Starting values and final values of all cost functions. The calculations are labelled
according to figures 3–9.

Label Epot [eV/atom] CFx−ray CFneutron CFelectron CFNMR

(a) −5.56 742.8 34.3 523.8 22.2 × 10−4

Class A: optimization with respect to scattering and NMR data

(b) −5.43 237.6 17.0 126.7 4.9 × 10−4

(c) −5.32 278.9 11.3 164.8 4.6 × 10−4

(d) −5.33 216.4 13.3 132.3 4.5 × 10−4

(e) −5.23 226.0 9.8 132.9 4.7 × 10−4

Class B: optimization only with respect to scattering data

(f) −5.63 279.3 26.9 165.0 27.1 × 10−4

(g) −5.58 319.3 18.0 177.2 32.0 × 10−4

(h) −5.60 262.8 23.2 156.2 28.0 × 10−4

(i) −5.55 289.3 16.3 155.4 35.8 × 10−4

data. The potential energies of models of class A are higher after optimization than before,
while all models of class B lie lower in energy.

Generally the values of the cost functions indicate a slightly better agreement with
experimental scattering data when the models were fitted to NMR data. Considering the
quadratic dependence of the cost function on the deviation these differences are extremely
small, though, as can also be seen in figures 3–5.

The effect of the final local optimization, which we included in the optimization procedure
to achieve the best possible fit between calculated and experimental data, was a reduction of the
cost functions of a few per cent (less than 1% in the case of neutron scattering and NMR data,
and 1–7% in the case of x-ray and electron scattering data) relative to the total improvement of
the cost function.

3.2. Radial distribution functions and NMR

Figures 3–5 show comparisons between scattering data calculated from the optimized models
and experimental data. For comparison, the data of the starting structure are also shown. The
two peaks of the radial distribution functions at 1.4 and 1.7 Å can be assigned to B–N and
Si–N distances respectively. While the position of the B–N peak remains unchanged during
optimization, the Si–N peak is shifted to slightly shorter distances. Generally, the agreement
between experimental and calculated data is good. Almost perfect agreement is found for
neutron scattering data. The small peak in the x-ray scattering data at 2.1 Å is not reproduced by
the models. This peak is most probably an artefact of the Fourier transform of the experimental
scattering intensity, an assumption that is supported by results of another series of calculations
(not shown here) where we computed G(r) by Fourier transformation of the scattering intensity
calculated from the models and were able to perfectly reproduce this peak [30]. Note that there
are no differences between the calculated scattering data of class A models (fitted to scattering
and NMR data) and class B models (fitted only to scattering data). All radial distribution
functions of the starting structure are more roughly shaped and exhibit narrower first-neighbour
peaks, which reflects the higher degree of ordering in these structures (cf figure 2).

While the radial distribution functions do not show differences between models of class A
and B, the calculated NMR spectra (figure 6) of models of class A and B differ noticeably.
Models of class A are in significantly better agreement with experimental 15N NMR data than
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Figure 6. NMR data of optimized models (black) and experimental data (grey) [23]. The sample
was 100% 15N enriched. For comparison the data calculated from the starting structure are also
shown. In some spectra the partial NMRs (related to different nitrogen environments) are shown.
(a) Starting structure; (b)–(e) class A models (optimized with respect to scattering and NMR data);
(f)–(i) class B models (optimized only with respect to scattering data).

models of class B, giving a hint that NMR data bring structural information into the models
that are not already contained in the radial distribution functions. From the partial NMR
spectra shown in figure 6 it can be seen that the differences between the spectra are caused
by differences in the distributions of nitrogen coordination environments.

Noteworthy are three peaks observable for NB3 environments. These correspond to
different mean NB distances (−300 ppm: rmean ≈ 1.3 Å, −250 ppm: rmean ≈ 1.55 ppm).
Because we used a distance-dependent parameterization only for chemical shifts in NB3 (and
NB4) environments, no such effects are observable for the other coordination environments.
However, all peaks are broadened because they are computed as Gaussians.

3.3. Local coordination

Before presenting the results, we make a few remarks about the determination of the
coordination environments. Determining coordination environments (which requires the
determination of the bond graph) in amorphous structural models is not unambiguous. The
usual method of assuming a bond between two atoms if their distance is below a certain
element-pair specific threshold is problematic because of the broad distribution of interatomic
distances. Using too small thresholds usually generates larger amounts of under-coordinated
atoms in the coordination statistic. Enlarging the threshold reduces the number of under-
coordinated atoms but increases the fraction of over-coordinated atoms. We decided to use
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Figure 7. Fractions of N atoms in different coordination environments. (a) Starting structure;
(b)–(e) class A models (optimized with respect to scattering and NMR data); (f)–(i) class B models
(optimized only with respect to scattering data).

a procedure for determination of the bond graph that is in line with chemical intuition which
expects bonds between spatially near atoms with unsaturated valencies. The procedure shall be
outlined in the following. In a first loop over all atoms, bonds were created applying element-
pair specific distance thresholds. In a second loop we tried to reduce the numbers of under- and
over-coordinated atoms. If an atom was under-coordinated (assuming correct coordination
numbers of 3 for B and N and 4 for Si), we looked for under-coordinated atoms within the
1.1 fold of the distance threshold and created a bond between the nearest of these atoms and
the current atom under consideration. Accordingly, for over-coordinated atoms, we searched
the first coordination sphere for atoms that were also over-coordinated and broke the bond to
the farthest of them if it was not nearer than the 0.9 fold of the distance threshold. Up to this
point, this correction procedure did not account for donor–acceptor bonds which are possible
between B and N. These were created in the last loop where only up to threefold coordinated B
and N atoms were considered. If a possible bonding partner (B for N and vice versa) was found
within the 1.1 fold of the distance threshold, a donor–acceptor bond was created (if several
possible bonding partners were found, the nearest of them was bonded). Our algorithm implies
that donor–acceptor bonds are preferably created between atoms that are farther apart, while
covalent bonds are preferably created between spatially nearer atoms, reflecting the observation
that donor–acceptor bonds are usually longer and weaker than covalent bonds.

As was already visible in the NMR spectra, the distributions of coordination environments
clearly show differences between models that were optimized with (class A) and without
inclusion of NMR data (class B). Naturally, these differences are mainly found in the
distribution of nitrogen environments (figure 7). Models of class A contain mostly NSi3 and
NB2Si environments in roughly equal amounts (about 30%). NB3 and NBSi2 environments are
also found, but in lower fractions of about 15 to 20%. Models of class B contain mostly NBSi2
and NB2Si environments. Besides these chemically ‘correct’ coordination environments, all
models including the starting structure contain minor amounts of under- and over-coordinated
nitrogen shells like NBSi and NBSi3. The amount of these environments is slightly lower in the
structures which were optimized with respect to NMR data. Interestingly, this is not the case in
class B models. Despite the changes of scattering data during the optimization, the composition
of nitrogen environments remains nearly unchanged in models that were only optimized with
respect to scattering data. Obviously NMR data bring structural information into the model that
may not be gained from scattering data alone.
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Figure 8. Fractions of B atoms in different coordination environments. (a) Starting structure;
(b)–(e) class A models (optimized with respect to scattering and NMR data); (f)–(i) class B models
(optimized only with respect to scattering data).

Figure 9. Fractions of Si atoms in different coordination environments. (a) Starting structure;
(b)–(e) class A models (optimized with respect to scattering and NMR data); (f)–(i) class B models
(optimized only with respect to scattering data).

The distributions of B and Si coordination environments do not show significant
differences between models of class A and B (figures 8 and 9). All models contain mostly
threefold coordinated boron in BN3 environments, in agreement with experimental 11B NMR
data. Besides these environments all optimized models contain smaller fractions of boron
in BN4 environments as well as very small amounts of under-coordinated boron in BN2

environments. The presence of smaller amounts of BN4 environments in the ceramic could
not be excluded from the 11B NMR measurements in [23] because the experimental signal was
broadened due to quadrupole effects so that the peak partially ranged up to the zone where
signals of BN4 units are expected. Very recent multiple quantum MAS NMR experiments,
however, confirmed that there are only BN3 environments present in the ceramic [37]. The
majority of silicon atoms is surrounded by four nitrogen atoms, which is in agreement with the
29Si NMR spectrum, but there are also smaller amounts of under-coordinated silicon in SiN3

environments. Some silicon atoms are surrounded by more than four neighbours.

3.4. Second-nearest neighbours and rings

Amorphous Si3B3N7 is composed of SiN4- and BN3-units which are connected by either boron
or silicon. The numbers of B and Si atoms in the second coordination sphere of silicon and
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Table 3. Mean numbers of second-nearest neighbours of B and Si in the starting structure and in
optimized models of class A (optimized with respect to scattering and NMR data) and B (optimized
only with respect to scattering data). Also shown are the experimentally determined values. Last
column: values that are expected for purely statistical connection without preference for certain
bonding schemes. B–X–Si means Si atoms in the second coordination sphere of B. The labelling of
the other second neighbours follows the same rules.

Starting structure Class A Class B Exp. [24] Stat.

B–X–B 2.6 ± 0.4 3.6 ± 0.2 2.7 ± 0.1 4.5 ± 0.5 2.6
B–X–Si 3.7 3.1 ± 0.2 4.1 ± 0.2 1.4 ± 0.2 3.4
∑

6.3 ± 0.4 6.6 ± 0.4 6.8 ± 0.3 5.9 ± 0.7 6.0

Si–X–B 3.7 3.2 ± 0.3 4.1 ± 0.3 1.8 ± 0.1 3.4
Si–X–Si 4.1 ± 0.2 4.8 ± 0.2 4.3 ± 0.3 6.5 ± 0.5 4.6
∑

7.8 ± 0.2 8.0 ± 0.5 8.4 ± 0.6 8.3 ± 0.6 8.0

boron thus give information about preferred connectivities of these building units and also
about the homogeneity of the spatial distributions of Si and B in the ceramic. Experimentally,
the numbers of second Si and B neighbours of silicon and boron were determined from a series
of double resonance NMR experiments [24]. From these experimental data (see table 3) it was
concluded that the distribution of silicon and boron is not homogeneous. Instead, there must
be regions with increased silicon or boron content. The size of these regions of inhomogeneity
must however be limited to ≈10 Å as was shown by TEM experiments [22], so that the size of
our models is sufficient to reproduce such inhomogeneities.

Because the experimental second-nearest-neighbour data were not included in the fitting
process they might also serve as an interesting test of our models. Investigations by Hannemann
et al had shown that is difficult to reach good agreement with experimental second-nearest-
neighbour data [17–19]. These authors generated several structural models of a-Si3B3N7,
employing several building schemes, partly followed by reverse Monte Carlo refinements.
Especially one class of their models, which were based on starting structures very similar to
the one used in this work, exhibited large deviations of the second-nearest-neighbour statistics
from the experimental values.

Before discussing the results, some remarks about the determination of the second-
nearest neighbours from our structures are appropriate. In principle, the numbers of second-
nearest neighbours may be determined either from the bond graph or from the partial radial
distribution functions by integration over the peak of the second coordination sphere. Because
the experimental values of the second-nearest neighbours were evaluated by a distance-based
analysis of the experimental data, we also calculated the numbers of second-nearest neighbours
from the radial distribution functions. For this purpose we integrated over the second-neighbour
peaks of the partial radial distribution functions taking the first minimum after the second-
neighbour peak (there was always an overlap of the second-neighbour peaks with peaks of
higher coordination spheres) as the upper integration limit. In some cases, this minimum was
not clearly defined and we performed several integrations varying the upper integration limit.
This is indicated by the error limits in table 3.

As can be seen in table 3, there are still significant deviations between the numbers of
second neighbours calculated from the models and the values determined from experimental
NMR data. However, fitting to NMR data in addition to scattering data clearly improves the
quality of the models. It should be remembered that the scattering data of all optimized models
are very similar; thus the differences of the numbers of second neighbours are a consequence
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Figure 10. Numbers of rings of different compositions. Light grey: starting structure; grey: class A
models (optimized with respect to scattering and NMR data); dark grey: class B models (optimized
only with respect to scattering data). Except for the starting structure the values are mean values
over different models. Bars indicate the variation range within a class.

of the inclusion of NMR data in the fitting process. Fitting to NMR data modifies the fractions
of different nitrogen environments in the model and thus the connectivity of the SiN4 and BN3

units. In models that were only fitted to scattering data the numbers of second neighbours
remain basically unchanged during the optimization process. The sums of second-nearest
neighbours (especially of boron) are somewhat higher than the ideal values of 6 (for B) and
8 (for Si) which are based on the assumption that there are only BN3 and SiN4 building units.
This is due to deviations from the ideal bonding scheme in the models and does not change the
observed trend that fitting to the 15N NMR spectrum favours B–N–B– and Si–N–Si–linkages.

In order to gain quantitative insight into structural features beyond the first two
coordination spheres we performed a ring analysis (figure 10). Rings of different compositions
(for example 4-rings with compositions (SiN)2 and SiNBN) were treated separately. The search
for rings of a certain composition was performed by looking for all closed loops over the bond
graph with the corresponding sequence of atoms. Sets of atoms defining smaller rings were not
allowed to contribute as a whole to a larger ring.

All models contain significant numbers of 4-rings, which are predominantly pure (BN)2

and (SiN)2 rings in class A models. In class B models the numbers of 4-rings remain essentially
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Figure 11. Distributions of bond angles N–B–N and N–Si–N in BN3 and SiN4 coordination
environments in the starting structure and in optimized models of class A (optimized with respect
to scattering and NMR data) and B (optimized only with respect to scattering data). All distribution
functions are normalized to the total number of angles of that type in a model. (a) Starting structure;
(b)–(e) class A models; (f)–(i) class B models.

the same as in the starting structure. The diagonal distances in these rings correspond to small
peaks around 2 Å in the radial distribution functions. A favouring of homogeneous (SiN)6

and (BN)6 rings over mixed (SiN)x(BN)y rings in class A models compared to class B models
is still apparent in the statistics of 6-rings. However, the majority of 6-rings are mixed rings
like SiN(BN)2, especially in models of class B. Even larger pure rings (BN)n (n = 4, 5, 6) are
found, favourably in models of class A. These pure rings become less important with increasing
ring sizes where the majority of atoms is involved in mixed rings. The total numbers of rings
with sizes �6 are larger in class B models than in class A models, whereas small 4-rings are
predominantly found in class A models. The results shown in figure 10 show that inclusion
of NMR data in the fitting process does not only affect short-range structural features like
coordination environments but also larger structural elements like rings. The latter is of course
a consequence of the effect on the coordination environments.

3.5. Bond angles and distribution of distances
More insight into the local structures around the atoms in the models can be gained from the
bond angle distributions. We analysed the distributions of bond angles separately for different
coordination environments considering the most frequent coordination environments. The
distributions of the bond angles around the two building units of the ceramic (BN3 and SiN4)
are shown in figure 11. Figures of bond angle distributions in other coordination environments
are provided as supplementary material (available at stacks.iop.org/JPhysCM/19/056201).

All models exhibit relatively broad distributions of bond angles. Maxima of the bond angle
distribution in threefold B and N coordination environments are found at ≈120◦, corresponding
to a trigonal planar coordination environment. SiN4 environments have a maximum of the bond
angle distribution at ≈110◦, as is expected for a tetrahedral coordination. Interestingly the
bond angles in SiN3 environments are also distributed around ≈110◦, which indicates that the
coordination is mainly non-planar in these environments. The shoulders and peaks in the bond
angle distributions at ≈90◦ are consistent with the presence of 4-rings which were discussed
in section 3.4. No angles around 60◦, which are typical for small 3-rings, are visible in the
distributions of bond angles.
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models of class A (optimized with respect to scattering and NMR data) and B (optimized only with
respect to scattering data). (a) Starting structure; (b)–(e) class A models; (f)–(i) class B models.
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Figure 13. Partial radial densities ρSiSi(r) and ρNB(r) of the starting structure and of optimized
models of class A (optimized with respect to scattering and NMR data) and B (optimized only with
respect to scattering data). (a) Starting structure; (b)–(e) class A models; (f)–(i) class B models.

Distance distributions between pairs of elements A and B were examined by calculating
the radial densities ρAB(r) (the mean particle densities of atoms of type B in a distance r from
an atom of type A) which are shown in figures 12–14. For better readability the functions are
only shown up to 4 Å. The y-scale is identical in all figures.

From these functions it can be seen that the two peaks at 1.4 and 1.7 Å in the total RDFs
are related to B–N and Si–N distances, respectively. The second-neighbour peaks at 2.5 and
2.8 Å are mainly related to Si–Si and N–N distances and to a lower extend also to B–B and
Si–B distances. The diagonal distances in small 4-rings, which are predominantly found in
class A models and which are also visible in the distributions of bond angles, are related to
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Figure 14. Partial radial densities ρSiB(r) and ρSiN(r) of the starting structure and of optimized
models of class A (optimized with respect to scattering and NMR data) and B (optimized only with
respect to scattering data). (a) Starting structure; (b)–(e) class A models; (f)–(i) class B models.

smaller peaks at ≈2 Å in the B–B radial density and ≈ 2.2 Å in the N–N radial density. The
small shoulder at ≈2.2 Å in the Si–Si radial density may be assigned either to diagonal Si–
Si distances in (SiN)4 rings but more probably to directly bonded Si atoms, because Si–Si
distances in (SiN)4 rings are typically larger. Beside these differences all radial densities are
very similar in models of class A and B.

Comparing the relatively narrow first-neighbour peaks of ρNB(r) and ρSiN(r) one finds that
the distribution of the first-neighbour distances is slightly broadened in all optimized structures
compared to the starting structure which might be due to the calculation of the scattering data
in real space. In addition to this broadening the Si–N first-neighbour peak is shifted to slightly
shorter distance after optimization while the position of the N–B first-neighbour peak remains
constant.

3.6. Free volume

The average density of our models is 2.5 g cm−3, which is much larger than the surprisingly
low experimental density of 1.9 g cm−3 of a-Si3B3N7 powder [38]. At the beginning of
our investigations we performed some shorter optimizations with scaled models that had the
correct density of 1.9 g cm−3, but with these models it was very difficult to achieve reasonable
agreement with experimental data, so we decided to use the model with the larger density.
At first sight this might seem questionable, but comparing this density with the averaged
densities of crystalline h-BN (ρ = 2.34 g cm−3 [39]) and Si3N4 (ρ(α-Si3N4) = 3.18 g cm−3,
ρ(β-Si3N4) = 3.20 g cm−3 [40]) of 2.83 g cm−3, the model density is reasonable.

Already by visual inspection voids were detectable in the optimized structures, indicating
that the local density even increased during optimization. To put this observation on a more
quantitative basis we measured the free volumes of the structures by scanning them with test
spheres with varying diameters. The scanning was carried out on a grid with a resolution of
0.05 Å. At each point of this grid the distance of the centre of the test sphere to all surrounding
atomic centres was calculated. If this distance was larger than the sum of the test sphere radius
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Figure 15. Free volume Vfree (d) as fraction of the simulation cell volume for different diameters d
of the test sphere. (a) Starting structure; (b)–(e) class A models (optimized with respect to scattering
and NMR data); (f)–(i) class B models (optimized only with respect to scattering data).

plus the atomic van der Waals radius for all atoms, all grid points belonging to the test sphere
were marked as part of the free volume. After applying this procedure to all grid cells, the free
volume was determined by counting all grid cells that were marked as free. The scanning was
repeated using different radii of the test sphere.

The volumes Vfree(d) that were accessible for test spheres with varying diameters d are
shown in figure 15. Vfree(d) is monotonically falling for all structures, indicating that the shapes
of the voids are not compact but rather dendritic: for small diameters of the test sphere, a net
of narrow voids is detectable, seaming the whole structure. With increasing diameter the voids
become more compact and separated. The largest voids calculated with this set of van der
Waals radii have diameters between 4 and 6 Å in the optimized structures and about 2 Å in the
starting structure (one must however keep in mind that the absolute size of the voids depends on
the chosen size of atomic radii, which are to a certain degree arbitrary). The shapes of Vfree (d)
of the optimized structures differ slightly, showing no systematic differences between models
of classes A and B. However, all free volumes of the optimized structures are larger than in the
starting structure, indicating that the occupied regions of the models shrink during optimization
and that the density in these regions exceeds the mean density of 2.5 g cm−3. We tried to detect
the local densities in the non-void regions of our models by measuring the density in spherical
volume elements with diameters of a few Å. An exact determination of the density of the
non-void regions was hampered by the fact that these regions had dimensions of only a few Å.
On such small length scales the density is ill defined, resulting in a strong dependence of the
calculated local densities on the radius of the volume element used for density measurement.
Probing the local densities using spherical volume elements with radii between 3 and 4 Å, we
obtained mean densities of the occupied regions of about 2.9–3.1 g cm−3 (calculated from the
mean values of the local density in regions with increased local density) which is comparable
to the densities of the hypothetical crystalline structures of Kroll and Hoffmann [33] of 2.8–
2.9 g cm−3. This result supports the hypothesis of Hannemann et al that the surprisingly low
experimental density of a-Si3B3N7 can be explained by the presence of small voids generated
during the synthesis which are surrounded by regions with higher density [18, 7].

4. Summary and conclusion

We have presented a modification of the reverse Monte Carlo method that allows for fitting
of the structural model to NMR spectra in addition to scattering data. Using this method and
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data from previous theoretical investigations of NMR chemical shifts [11, 26, 25, 27] it was
for the first time possible to generate structural models of a-Si3B3N7 which are not only in
agreement with scattering data from three different experimental sources (x-ray, neutron and
electron scattering) but also with the 15N NMR spectrum of the ceramic. An interpretation
of this spectrum was not possible before since it exhibits a broad structureless peak that is a
superposition of signals related to different nitrogen environments whose chemical shifts were
only partly known experimentally.

Fitting to the 15N NMR spectrum affects the fractions of different N coordination
environments in the models. These structural effects are not visible in the radial distribution
functions of the models, showing the necessity of including further information than
experimental scattering data in the fitting process. Because N connects the BN3 and SiN4

building units of the ceramic, changes in the nitrogen coordination environments also change
the preferred connection scheme of these building units. As a result, the numbers of second-
nearest B and Si neighbours of B and Si were more similar to the experimental values when
the models were fitted to the NMR spectrum. There are, however, still significant deviations
between the calculated and the experimentally determined numbers of second neighbours. The
results of Hannemann et al [18] show that the numbers of second-nearest neighbours in the
models depend on the starting structure of the optimization process, so these deviations could
probably be reduced by using other starting structures. They possibly also could be reduced if
better parameterizations of the chemical shifts were available (see below).

In all structural models voids can be detected after RMC optimization, indicating that the
local density in the non-void regions is even higher than the mean density of 2.51 g cm−3. This
is a hint that the surprisingly low experimental density of 1.9 g cm−3 can be explained by the
presence of small voids surrounded by regions with higher density, as was already proposed by
Hannemann et al [18, 7].

The currently used parameterizations for calculation of the chemical shifts during
optimization are rather crude. It would be highly desirable to have parameterizations at
hand that take more detailed structural features into account. This would further improve
the reliability of the models. From our experience it is, however, not easy to develop such
a parameterization for solid state chemical shifts.
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[24] van Wüllen L, Müller U and Jansen M 2000 Understanding intermediate-range order in amorphous nitridic
ceramics: A 29Si{11B} REDOR/REAPDOR and 11B{29Si} REDOR study Chem. Mater. 12 2347–52

[25] Gastreich M 2001 Tools zur Modellierung von Siliciumbornitridkeramiken: Entwicklung von
Mehrkörperpotenzialen und Berechnungen zur NMR-chemischen Verschiebung PhD Thesis University
of Bonn http://hss.ulb.uni-bonn.de/diss online/math nat fak/2001/gastreich marcus

[26] Gastreich M, Doerr M and Marian C M, Assessment of cluster sizes, connectivities and sizes to foresee 15N
chemical shifts in silicon nitrides, in preparation

[27] Doerr M and Marian C M 2006 The 15N chemical shifts in mixed NB2Si and NBSi2 environments of Si3B3N7—a
theoretical investigation Solid State NMR 30 16–28

[28] Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Optimization by simulated annealing Science 220 671–80
[29] Kirkpatrick S 1984 Optimization by simulated annealing—quantitative studies J. Stat. Phys. 34 975–86
[30] Doerr M 2006 Strukturmodellierung amorpher Festkörper–Entwicklung eines erweiterten reverse-Monte-Carlo-

Programms und Untersuchungen zu NMR-chemischen Verschiebungen in Festkörpern PhD Thesis University
of Düsseldorf http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461

[31] Jeschke G, Hoffbauer W and Jansen M 1998 A comprehensive NMR study of cubic and hexagonal boron nitride
Solid State NMR 12 1–7

[32] Harris R K, Leach M J and Thompson D P 1990 Synthesis and magic-angle spinning nuclear magnetic resonance
of 15N-enriched silicon nitrides Chem. Mater. 2 320–3

[33] Kroll P and Hoffmann R 1998 Silicon boron nitrides: hypothetical polymorphs of Si3B3N7 Angew. Chem. Int.
Edn 37 2527–30

21

http://dx.doi.org/10.1021/jp050586h
http://dx.doi.org/10.1080/14786430500154075
http://dx.doi.org/10.1016/S0022-3093(99)00012-5
http://dx.doi.org/10.1016/S0022-3093(99)00013-7
http://dx.doi.org/10.1002/(SICI)1096-987X(199805)19:7<716::AID-JCC3>3.0.CO;2-T
http://dx.doi.org/10.1006/snmr.2000.0020
http://dx.doi.org/10.1021/jp014270v
http://dx.doi.org/10.1088/0953-8984/13/46/201
http://dx.doi.org/10.1080/014423598230171
http://dx.doi.org/10.1016/S0022-3093(00)00199-X
http://dx.doi.org/10.1103/PhysRevB.70.144201
http://dx.doi.org/10.1021/jp036608m
http://dx.doi.org/10.1039/b415188g
http://dx.doi.org/10.1039/a902346a
http://dx.doi.org/10.1016/S0921-4526(99)01368-X
http://dx.doi.org/10.1021/cm9911870
http://dx.doi.org/10.1021/cm001016r
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2001/gastreich_marcus
http://dx.doi.org/10.1016/j.ssnmr.2005.12.003
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/BF01009452
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://diss.ub.uni-duesseldorf.de/ebib/diss/show?dissid=1461
http://dx.doi.org/10.1016/S0926-2040(98)00045-9
http://dx.doi.org/10.1021/cm00009a025
http://dx.doi.org/10.1002/(SICI)1521-3773(19981002)37:18<2527::AID-ANIE2527>3.0.CO;2-


J. Phys.: Condens. Matter 19 (2007) 056201 M Doerr and C M Marian
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